CCOG for EET 113 archive revision 202201
You are viewing an old version of the CCOG. View current version »
- Effective Term:
- Winter 2022
- Course Number:
- EET 113
- Course Title:
- Electrical Power
- Credit Hours:
- 5
- Lecture Hours:
- 40
- Lecture/Lab Hours:
- 0
- Lab Hours:
- 30
Course Description
Intended Outcomes for the course
Upon completion of the course students should be able to:
- Analyze alternating current (AC) power and transformers.
- Analyze resonant circuits and filters.
- Analyze three phase power distribution.
- Perform calculations with pulse waveforms.
Course Activities and Design
Lecture and discussion are the instructional methods used. Weekly homework is assigned. Laboratory activity includes building circuits on solder-less breadboards, making circuit measurements using test equipment, analyzing test data, and comparing to predictions using theory.
Lab exercises involve using a PC with spreadsheet, word processor, and circuit simulation software. The student is expected to learn the following in the lab:
Use the DMM (digital multi-meter) to measure AC voltage, and current.
Use the Oscilloscope to measure AC waveforms in the time domain.
Use the oscilloscope to measure phase angles between two AC waveforms.
Use the function generator to generate waveforms at specific frequencies and amplitudes.
Build circuits on a solder-less breadboard.
Use the DC power supply
Use the spreadsheet and word processor to process lab data and to write lab reports.
Use circuit simulation software to simulate circuits built in the lab.
Outcome Assessment Strategies
Evaluation is by exams, homework, and lab work.
Course Content (Themes, Concepts, Issues and Skills)
1. Resonance
a) Series and parallel resonance
b) Selectivity, quality factor Q
c) Frequency response
2. Filters and Bode Plots
a) Logarithms and decibels
b) Filter characteristics
c) Transfer functions
d) Simple single pole RC and RL filters
e) Bode plots of single pole RC and RL filters
f) Crossover network application
3. Transformers
a) Mutual inductance
b) Turns ratio and impedance ratio
c) Iron core transformers
d) Frequency response
e) Power distribution and Residential wiring examples
4. Three Phase Power Systems
a) Three phase sources, generators
b) Wye and delta connections
c) Phase sequence
d) Three phase transformers
e) Three phase power distribution
f) Balanced and unbalanced loads, motors
5. Fourier Analysis
a) Fourier series and application to circuit analysis
b) Spectrum analyzer basics
b) Fourier spectrum of the sine, square, triangular, and rectified sine wave forms
c) FFT and applications, including in simulation software
6. AC Power
a) Resistive (average) and reactive power.
b) Apparent power.
c) Power in inductive and capacitive circuits.
d) Power measurement and the power triangle, P, Q, and S.