MTH 252 Lab Partial Fraction Decomposition

Damien Adams

Purpose

Integrating a rational function is actually not done by undoing the quotient rule. Instead, we use a method called partial fraction decomposition. This method involves breaking up (decomposing) the fraction into smaller (partial) pieces. We then use substitution to integrate the smaller pieces.

- (a) We use PFD to decompose our fraction, then we integrate things like $\frac{-2}{x+1}$ or $\frac{-2}{(x+1)^2}$. How do we integrate $\int \frac{-2}{x+1}$?
- (b) How do we integrate $\int \frac{-2}{(x+1)^2}$?
- (c) We can use the Heaviside Cover-up to integrate a rational function whose denominator factors into distinct linear factors.
- (d) We use the method of solving a system of linear equations when our denominator has repeated factors.

1

Prompts

1. Evaluate
$$\int \frac{x}{x^2 + x - 2} dx$$

2. Evaluate
$$\int \frac{5}{x^2 + 5x + 6} dx$$

3. Evaluate
$$\int_0^1 \frac{2x-1}{x^2-2x-3} \ dx$$

4. Evaluate
$$\int \frac{1}{x(x-1)(x-2)(x-3)(x-4)} dx$$
 8. Evaluate $\int \frac{1}{x^2(2x-1)^2} dx$

5. Evaluate
$$\int \frac{x^2 + x + 1}{x^4 - x^2} dx$$

6. Evaluate
$$\int \frac{x^3 - 2}{(x^2 - 1)^2} dx$$

7. Evaluate
$$\int_0^1 \frac{x-1}{x(2x+1)^3(x-2)} dx$$

8. Evaluate
$$\int \frac{1}{x^2(2x-1)^2} dx$$