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MTH 254 LESSON 10. THE CHAIN RULE

10.1 The Chain Rule, Case 1

Let us recall that, given a function f(x) = g(h(x)) that is differentiable on some continuous
interval (a, b), then f ′(x) = g′(h(x)) · h′(x). Or, in Leibniz notation

df

dx
=

dg

dh
· dh
dx

.

This could be used to differentiate a function such as f(x) = sin(x2) where we recognize
this as a composite function with sine being the “outside” function and x2 being the inside
function. The usefulness of the chain rule was also apparent when differentiating an equation
in x and y, where we take the derivative with respect to x and keep in mind that y is actually
a function of x. For example:

xy2 = x2 + 2y

d

dx
(xy2) =

d

dx
(x2 + 2y)

y2 + x · (2y · y′) = 2x+ 2y′

y2 + 2xy · y′ = 2x+ 2y′

Here we note that the chain rule was used on the derivative of y2 which is really the
composite function (y(x))2 with the squaring being the outside function and y(x) the inside
function so the derivative of y2 with respect to x is 2y · y′.

The first case of the chain rule we will look at for our purposes has actually already been
explored minimally in applications of rates of change. Let’s take a look at the following
example:

Example 10.1.1 Two cars are traveling to a common destination. The first car, car A,
is traveling due north at 60 mi/hr while the second car, car B, is traveling due west at 50
mi/hr. At what rate are the cars approaching each other when car A is 0.3 mi and car B is
0.4 mi from their destination? Let x be the distance car A is from their destination, y be
the distance car B is from the destination, and z be the distance between the cars.
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We note that, in the above example, the distance between the two cars can be described by
the equation z =

√
x2 + y2 which is actually a function in two variables so we can investigate

it using multi-variable calculus. Moreover, we note that x and y are both functions of time.
Specifically x(t) = −60t+x0 and y(t) = −50t+ y0 for some initial distances, x0 and y0 from

their destination. Here we were looking for
dz

dt
which we did by taking the derivative of both

sides with respect to t by thinking of all variables as functions of time. Specifically, we got

dz

dt
=

xdx
dt

+ y dy
dt√

x2 + y2
.

This is exactly case 1 of the chain rule for multi-variable functions. We state this rule
explicitly here:

Theorem 10.1.1

Suppose that z = f(x, y) is differentiable in x and y while x = g(t) and y = h(t) are
differentiable in t. Then z is a differentiable function of t and is found to be

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Proof : The proof will done after the following example and exercise.

Example 10.1.2 Given z =
√
x2 + y2, where x(t) = −60t+3 and y(t) = −50t+2.65, find

dz

dt

∣∣∣∣∣
t=0.045

.

Figure 10.1.1: Graph of z =
√
x2 + y2, where

x(t) = −60t+ 3 and y(t) = −50t+ 2.65
View in Geogebra:
https://www.geogebra.org/3d/ptjmrryu
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Notice that in Figure 10.1.1 we can see how to interpret having a function in two variables
with each variable being a function of another variable. Looking down on the xy-plane we see
the plane curve described by the parametric equations x(t) = −60t+3 and y(t) = −50t+2.65.
The z-value is then taken on the surface of the cone as the x and y-values travel along the
plane curve. Thus dz/dt is the rate of change of z with respect to t as you move along the
space curve shown.

Exercise 10.1.1 Let z = x2 sin(y), x(t) = t2 + 1, and y = et. Find
dz

dt

∣∣∣∣∣
t=0

.

Proof of Theorem 10.1.1: In Lesson 9.2 it was covered that the change in z, given a
function z = f(x, y), is

Δz =
∂f

∂x
Δx+

∂f

∂y
Δy + ε1Δx+ ε2Δy

where ε1 and ε2 go to 0 as Δx and Δy go to zero.

Now, Δx = g(t + Δt) − g(t) is the change in x induced by a change, Δt in t and Δy =
h(t+Δt)− h(t) is the change in y induced by Δt. Thus, if Δt → 0, then Δx and Δy both
go to zero as well. In turn, if Δt → 0, then ε1 and ε2 both go to zero as well. Therefore:

dz

dt
= lim

Δt→0

Δz

Δt

= lim
Δt→0

∂f

∂x
Δx+

∂f

∂y
Δy + ε1Δx+ ε2Δy

Δt

= lim
Δt→0

[
∂f

∂x

Δx

Δt
+

∂f

∂y

Δy

Δt
+ ε1

Δx

Δt
+ ε2

Δy

Δt

]

=
∂f

∂x
lim
Δt→0

Δx

Δt
+

∂f

∂y
lim
Δt→0

Δy

Δt
+
(
lim
Δt→0

ε1

)
lim
Δt→0

Δx

Δt
+
(
lim
Δt→0

ε2

)
lim
Δt→0

Δy

Δt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+ 0 · dx

dt
+ 0 · dy

dt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
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10.2 The Chain Rule, Case 2

We now want to look at, keeping z = f(x, y) as a function in two variables, look at how to
handle when x = g(s, t) and y = h(s, t) are themselves functions of two variables. Here we
can find partial derivatives of z with respect to s and t individually. In a case like this, if
we plug in g(s, t) for x and h(s, t) for y into an expression for z, we would still have z as
a function of two variables so we wouldn’t be able to get a regular derivative out, only the
partial derivatives.

Theorem 10.2.1

Suppose z = f(x, y) is differentiable in x and y while x = g(s, t) and y = h(s, t) are
differentiable in s and t. Then

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
and

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t

Example 10.2.1 Let z = x2 sin(y), x = st2, and y = est. Use the chain rule to find
∂z

∂t
and

∂z

∂s
. What is

∂z

∂t

∣∣∣∣∣
t=.1 and s=−0.5

?

Figure 10.2.1: Graph of z = x2 sin(y), where
x(s, t) = st2 and y(s, t) = est

View in Geogebra:
https://www.geogebra.org/3d/squvuymr

If we want to interpret these derivatives graphically, note that z = f(x, y) will give us a
surface defined for all x and y in R. However, looking at x(s, t) = st2 and y(s, t) = est you
can start to realize that the points (x, y) ∈ R

2 that can be reached via s and t is not the
entire plane. So z = f(g(s, t), h(s, t)) is a subset of the surface obtained from when we look
at z = f(x, y) where x and y can be any real numbers. When we graph f(g(s, t), h(s, t)) we
see the gridlines created by s and t and the partial derivatives of z with respect to s and t
are thus the rates at which z is changing as we travel along these respective gridlines.
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For your exercise, you are given a function w = w(x, y, z) in three variables while x = f(s, t),
y = g(s, t), and z = h(s, t) are each functions of two variables. You are asked to find the
partial derivatives of w with respect to s and t. While this is slightly more complicated than
the previous example, the methodology is no different. Here the generalized chain rule is
given in case you would like to look it over before doing the next exercise, but it shouldn’t
be necessary.

Theorem 10.2.2

Suppose the w is a function of n-variables, x1, x2, ... , xn and that each xi is a function
of m-variables t1, t2, ... , tm. Then the partial derivatives of w with respect to each ti
individually are

∂w

∂ti
=

∂w

∂x1

∂x1

∂ti
+

∂w

∂x2

∂x2

∂ti
+ ...+

∂w

∂xn

∂xn

∂ti
.

Exercise 10.2.1 Suppose w = x2 + y2 − z2 while x(s, t) = sin(s), y(s, t) = cos(s), and

z(s, t) = t. Determine
∂w

∂s
, and

∂w

∂t
.

Figure 10.2.2: Graph of level surfaces of
w = x2 + y2 − z2 and
r(s, t) = 〈sin(s), cos(s), t〉
View in Geogebra:
https://www.geogebra.org/3d/sguvec6v

To interpret these partial derivatives, take a look at the graph in figure 10.2.2. Here we show
a cutout of level surfaces of w = x2 + y2 − z2 where each level surface represents a different
value of w. The circular cylinder is the surface generated by the parametric equations in two
variables x(s, t) = sin(s), y(s, t) = cos(s), and z(s, t) = t. The partial derivatives of w with
respect to s and t are the rates at which we move from one level surface of w to another
along the gridlines of the circular cylinder given by s and t.
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10.3 Implicit Differentiation

In single-variable calculus we found the derivatives of implicit equations in x and y by
assuming y is a function of x and taking the derivative of both sides with respect to x to

find
dy

dx
. See the introduction example 10.1.0 above. We now find a formula and often easier

way to find
dy

dx
.

Suppose we have an equation in x and y so that x and y are related to each other. This
equation could be an explicit or implicit equation, but either way we could set the equation
to 0 by moving everything to one side. We then have an equation of the form f(x, y) = 0.

Looking for
dy

dx
we take the derivative of both sides with respect to x and apply the chain

rule from theorem 10.1.1 to the lefthand side to obtain

∂f

∂x

dx

dx
+

∂f

∂y

dy

dx
= 0.

Noting that dx/dx = 1, we solve for
dy

dx
and get

Theorem 10.3.1

Given an equation f(x, y) = 0 where f is partially differentiable in x and y, then

dy

dx
= −

∂f
∂x
∂f
∂y

= −fx
fy

so long as
∂f

∂y
�= 0.

Example 10.3.1 If cos(x−y) = xey, find
dy

dx
both the way that was shown in single-variable

calculus and using theorem 10.3.1.
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This same technique can be used for equations of more than two variables. Say we have an
equation in three variables, say x, y, and z, and we set it equal to zero by moving everything

to one side then we get an equation of the form f(x, y, z) = 0. Supposing we want
∂z

∂x
. We

can take this partial derivative of both sides and apply the chain rule to the left to obtain

∂f

∂x

∂x

∂x
+

∂f

∂y

∂y

∂x
+

∂f

∂x

∂z

∂x
= 0

and then solve for
∂z

∂x
to obtain

∂z

∂x
= −

∂f
∂x
∂f
∂z

= −fx
fz

since
∂x

∂x
= 1 and

∂y

∂x
= 0. Note fz �= 0 for this formula to be applicable.

Theorem 10.3.2

Given an equation f(x, y, z) = 0 where f is partially differentiable in x, y, and z then

∂z

∂x
= −fx

fz
and

∂z

∂y
= −fy

fz

so long as fz �= 0.

Exercise 10.3.1 Find
∂z

∂x
and

∂z

∂y
if yz = ln(x+ z) using theorem 10.3.2.

PCC Math Page 8


